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In an increasingly complex military operating environment, next generation wargaming
platforms can reduce risk, decrease operating costs, and improve overall outcomes.
Novel Artificial Intelligence (AI) enabled wargaming approaches, based on software
platforms with multimodal interaction and visualization capacity, are essential to provide
the decision-making flexibility and adaptability required to meet current and emerging
realities of warfighting. We highlight three areas of development for future warfighter-
machine interfaces: AI-directed decisional guidance, computationally informed decision-
making, and realistic representations of decision spaces. Progress in these areas will
enable development of effective human-AI collaborative decision-making, to meet the
increasing scale and complexity of today’s battlespace.

Keywords: decision-making, interface, wargaming and wargames, artificial intelligence, Augmented/mixed
reality, visualization

INTRODUCTION

In traditional wargaming, commanders utilize a common map-based operational terrain and
model how combinations of factors within the Military Decision Making Process (MDMP,
Box 1) produce courses of action (COAs), possible counter-actions, resource usage estimates, and
predicted outcomes (Army, 1997, 2014, 2015). Over days or weeks, the MDMP process leads to
a refined set of COAs that make certain assumptions about the operating environment, including
terrain, weather, and the availability and capabilities of assets in setting the theater (i.e., shaping
activity in support of major combat operations).

Although MDMP assists commander staff in understanding an operational environment and
considering an operational approach, the process has many limitations such as time intensiveness,
rigidity of the assumptions, limited opportunities for training across scenario variations, and few
opportunities for integrating Artificial Intelligence (AI) guidance into the decision-making process.
Traditionally, the success of a mission is directly related to the ability of command to execute
the MDMP. However, given the increased complexity of today’s multi-domain operations (MDO)
(Feickert, 2021) with its vast array of mission command systems and processes, integration and
synchronization of all activities associated with operations is becoming increasingly difficult to the
point of humanly impossible. The lack of planning expertise resulting from a deficient MDMP can
lead to desynchronized and dischordant operations and ultimately cost the lives of Soldiers.
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BOX 1 | Military Decision Making Process (MDMP).
The MDMP is the Army’s doctrinal approach to problem solving starting with receipt of a mission and ending with the production of operational orders. MDMP is
used as a tool to assist command staff in examining numerous friendly and enemy COAs. The 7-step process of the MDMP instills thoroughness, clarity, sound
judgment, logic, and professional knowledge in the decision-making processes required for planning new missions, extending operations, and performing training
exercises (Army, 1997, 2015).

Commanders initiate the MDMP upon receipt of a mission. In Step 1 of the MDMP, all staff and key mission participants are alerted of the mission and the pending
planning requirements including the amount of time available for conducting the MDMP. Tools required for performing a mission analysis are identified and
documents related to the mission and the area of operations are gathered. Performing the mission analysis, Step 2, builds a full understanding of the mission
including critical facts and assumptions resulting in a proposed mission statement and mission analysis briefing in preparation for development of COAs.

Steps 3 through 6 of the MDMP focus on developing COAs for analysis and comparison. These steps include: Step 3, COA development; Step 4, COA analysis
(wargaming); Step 5, COA comparison; and Step 6, COA approval. A COA is a potential solution to an identified problem. Each COA is examined for validity using
screening criteria such as accomplishing the mission within the established time frame, space, and resource limitations. The COA selection process often involves
wargaming, which attempts to visualize the sequential flow of the operation given friendly force’s strengths and enemy’s capabilities while considering the impact and
requirements of civilians in the area of operations (Army, 2014). The benefits of a wargaming approach highlight the strengths and weaknesses of the COAs with
respect to each other. This tends to be an iterative process where COAs are evaluated and then modified if required until one or more COAs emerge with the highest
probability of success for accomplishing mission objectives.

After a specific COA has command approval, the final step of the MDMP is production of the operations order which is a directive to subordinate and adjacent units
intended to coordinate the activities of all organizations participating in the mission. This step engages active collaboration among all organizations affected by the
disseminated order and builds a shared understanding of the situation.

The ability to visualize the battlespace is not specifically
described in the MDMP, yet it obviously plays an important
role in the decision process. Recently, new systems and
technologies integrating advanced visualization capabilities have
been developed that improve situational awareness and therefore
enhance decision-making processes. Army examples include Nett
Warrior (Gilmore, 2015), which enables dismounted warriors to
visualize nearby friendly and hostile forces while collaboratively
planning tactical missions based on the local terrain. Although
this technology extends the radio and digital mapping to the
dismounted warrior, it lacks an underlying AI engine to provide
decision assistance. The Battlespace Visualization and Interaction
platform (BVI, formerly Augmented REality Sandtable, ARES)
is another example of Army technology that enables distributed
collaboration for mission planning with both 2D and 3D
visualization capabilities of a common operating picture from
arbitrary viewpoints and a wide selection of devices (Su et al.,
2021). The BVI architecture is formulated to pull in external
computing services such as analytic pipelines, models, and AI
engines. Efforts to integrate these types of services into BVI,
including AI for enhancing decision support, are underway at the
Army Research Laboratory.

Currently, MDMP does not incorporate AI guidance into
the overall mission planning approach. The Army’s Automated
Planning Framework (APF) (Bailey, 2017) begins to address AI-
assistive decision-making by inserting autonomous technologies
into the MDMP workflow. Command staff can receive contextual
assistance during mission planning and COA development
through APF’s digital plan representation, plan creator, and plan
monitor tools. Mission execution and estimation capabilities
provide automated assistance for improved decision tracking and
support activities by monitoring planned versus actual progress
of the mission. Although APF introduces a foundational level of
automation into the MDMP, it lacks the advanced visualization
and user interaction capabilities offered by Nett Warrior and BVI.

Offering both ground force automation and user visualization
capabilities is the Army’s most recognized wargaming platform—
Semi-Automated Forces (OneSAF) providing modeling and

simulation capabilities for computer-generated ground forces
(PEO_STRI, 2022). OneSAF offers semi-automated and fully
automated modeling of military entities (i.e., soldiers, tanks,
helicopters, and aggregate units) in a real-world-like battlespace
representation at various levels of fidelity to support specific
applications and scenarios. OneSAF is primarily used for training
and is interoperable with current mission command systems.
It can simulate a wide range of operating environments using
multiple-resolution terrains and detailed entity-related databases.
However, OneSAF’s advantageous high-fidelity modeling of
terrain and entity systems makes it costly to setup and run.
It suffers from the limitations of an aging system and is well-
known to be difficult to use with experienced soldiers requiring
significant training to learn how to operate the simulation
(Ballanco, 2019). OneSAF’s complex functionality is not well
suited for developing AI-enabled capabilities for rapid and agile
warfighter-machine decision-making.

Aside from MDMP and the Army platforms mentioned above,
recent efforts to integrate AI into the decision-making process
have included a number of approaches (Goecks et al., 2021a),
with some success in modeling the human decision-making
process. In general, AI has had some success for problems with
limited decision variables, such as resource allocation (Surdu
et al., 1999), flight simulators (Drubin, 2020), and simpler
scenarios. Ongoing challenges include the need to improve the
capability of AI to tackle complex decisions with multiple actors,
incomplete and possibly conflicting information, changing unit
action and environmental properties, and the need to visualize
the consequences of these decisions across many spatial and
temporal scales and domains.

The following sections describe potential improvements
to the MDMP. Section “Required Advancements for Future
Military Decision Making Process” overviews three research
areas supporting MDO decision-making and graphically depicts
the relationships between these research areas and military
doctrinal approaches to decision-making. The subsections in
section “Required Advancements for Future Military Decision
Making Process” offer a more in-depth discussion of each
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research area. Section “Outlook Toward Advancing Interface
Technologies for Human-Artificial Intelligence Team Decision-
Making” outlines future directions in the development of
warfighter-machine interfaces (WMI) with an emphasis on
cross-disciplinary research in human-AI teaming pertaining to
decision-making. Section “ Conclusion” concludes the paper.

REQUIRED ADVANCEMENTS FOR
FUTURE MILITARY DECISION MAKING
PROCESS

Military Decision Making Process limitations to support complex
decision-making for MDO highlight the need for improvement
in three research areas. First, there is a need to integrate
AI generated guidance and assistive decision-making support
into the MDMP. This includes both further development and
integration of AI into battlespace decision planning, as well
as further improvements in the explainability and transparency
of the AI’s decision-making process (Chen et al., 2018).
Second, there is a need to integrate the decision analytics
with the power of high performance computing (HPC), at
the strategic level as well as the tactical edge when possible.
This would enable leveraging the power of an HPC system
to support modeling, analytics, and computation time, while
integrating and synchronizing information from across all theater
domains. Finally, there is a need to develop more accurate and
interactive representations of the decision space using advanced
visualization technologies such as mixed reality. Rather than
simply displaying a 2D rendering of the terrain at a fixed
timescale, there is a need to visualize how decisions across
different domains interact, and to exploit mixed reality to both
improve the throughput of the understanding and generate
insights not possible with flat displays.

In addition to MDMP, other more broadly applicable
military doctrines supporting combative problem solving
include: DOTMLPF [e.g., Doctrine, Organization, Training,
Materiel, Leadership, Personnel, and Facilities; (Army, 2018)], a
framework for identifying gaps and proposing design solutions
for current and future warfighting requirements; and METT-TC
[e.g., Mission, Enemy, Terrain and Weather, Troops, Time
Available and Civil Considerations; (Army, 2019)], a structured
framework for capturing the state of mission relevant factors for
shared evaluation during military operations. These doctrines
define the information context of the MDO battlefield and form
a central foundation for military decision-making as applied to
the three research areas described above. Research progress and
MDO relevant doctrine draw from, inform, and strengthen each
other in developing novel representations of complex military
decision spaces for both human and AI-enabled command as
shown in Figure 1 (Army, 2010).

Artificial Intelligence-Directed Decisional
Guidance
Novel AI-enabled WMIs are needed to both leverage ongoing
advances in AI decision-making and to contribute to AI

learning for complex adaptive decision-making. Testing AI
decision aids in simplified representations of battlespaces is an
important initial step in the development process and a precursor
to integrating AIs into more mature battlespace platforms
(i.e., BVI, OneSAF). Developing AI testbeds for decision aid
experimentation can yield increasingly capable suggestions of
possible COAs in MDO. Figure 2 shows two example Army
developed AI testbeds.

Artificial Intelligence testbeds enable the development of AIs
that pool information across all domains and compute risks and
expected rewards for both human and AI agents. The left side
of Figure 2 shows the ARL Battlespace testbed (Hare et al.,
2021) which is ideal for developing novel AIs for complex
decision-making from the ground up. Its abstraction of the
battlespace emphasizes core reasoning principles under Army-
relevant scenarios, in this case, cyber deception with a honeypot.
The smaller grid space enables the AI learning and development
to focus on complex reasoning in depth under uncertainty, with
multiple friendly and hostile agents. The right side of Figure 2
shows ARL’s Simple Yeho testbed which offers capabilities for
integrating AI development with tacit reasoning in more real-
world scenarios with multiple terrain-based layers for elevation,
viewsheds, obstacles, foliage (concealment), roads, and urban
areas. Red shading and black lines indicate the mission start and
end points, left and right bounds, and AI-suggested routes. This
additional realism enables tie-ins to MDO doctrines including
DOTMLPF and METT-TC and enables co-development of AI
with naturalistic, opportunistically captured Soldier behaviors.
Both of these AI testbeds are extendable as platforms for
traditional and immersive mixed reality WMI development.

Use of progressive and extendable AI testbeds allows
investigation of several basic limitations of existing AI,
particularly for complex and adaptive decision-making with
uncertainty, with collaborative and adversarial human and
AI agents. Modeling multi-agent collaborative and adversarial
decision-making can be particularly complex because of its
recursive nature in which other agents are part of the model
(Goldman, 1973; Grüning and Krueger, 2021), requiring dynamic
and evolving estimates of decision features, individualized values,
risk aversion, memory, and attention. These situations of high
uncertainty, complexity, and dynamics are areas where humans
excel, where appropriately designed interfaces and AI testbeds
for human-machine teaming can provide accelerated and more
effective decisions. For effective teaming, the novel WMI should
help the warfighter to sift through complex information and help
the AI to discover implicit rules for decision-making. Below,
we provide case examples of how human-machine teaming
can be effective.

Complex decision-making as needed in multi-domain
wargaming is an immediate challenge for developing effective
AI decision aids. The success of recent AIs in games such
as Go, Chess, Minecraft, and Monopoly (Silver et al., 2017;
Goecks et al., 2021b; Haliem et al., 2021) are based on games with
complete knowledge of the existing state of the world (i.e., “open”
games), whereas wargaming typically includes incomplete (e.g.,
Starcraft), uncertain, and/or deceptive information about the
operational environment (Vinyals et al., 2019). Uncertainty can
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FIGURE 1 | The three research areas of development needed for novel warfighter-machine interfaces (WMIs) and AI-enabled decision aids supporting and
enhancing foundational MDO doctrines. [Lower right image source: Lebsack (2021)].

FIGURE 2 | Two example ARL AI testbeds. Left side: ARL Battlespace (Hare et al., 2021) (https://github.com/USArmyResearchLab/ARL_Battlespace). Right side:
ARL’s Simple Yeho testbed. Images created by C. Hung.

also arise from changing physics or other environmental rules, as
has been explored with Angry Birds (Gamage et al., 2021). The
lack of knowledge makes it difficult for AI agents to calculate the
risk-reward profiles of future actions, due to the uncertainty in
the state of the world, state of the different actors, and the effects
of the actions taken (Cassenti and Kaplan, 2021). Uncertainty
also limits the ability of an AI to estimate the risk-reward profiles
of the other actors, which are needed to calculate effective
game theoretic strategies. It is not uncommon for AI to be
overwhelmed by the breadth of possible optimal and near-
optimal choices (Lavine, 2019), i.e., selecting the wrong choice
due to limited information, since humans employ heuristics
to make efficient choices and predictions when developing
strategies for effective exploration of hidden information
(Gardner, 2019). To assist the development of the AI’s capability

for implicit knowledge and exploration, novel WMIs need to
explain and present the decision landscape effectively, to allow
the warfighter to quickly and naturalistically navigate through
possible choices, while enabling the AI to opportunistically
learn from human decision-making without imposing cognitive
burden (Lance et al., 2020). Such opportunistic learning
could include, for example, gaze tracking to capture visual
regions and unlabeled targets that attract human interest and
intent. They could also include actor critic methods building
on naturalistic Soldier choice behaviors, to improve the AI’s
learning of how human experts prioritize certain choices under
uncertainty, incomplete information, and deception, depending
on mission-relevant contexts.

Another fundamental challenge for developing AI-enabled
WMIs is how to effectively integrate and display information
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across all five domains in MDO, particularly space and cyber, as
information across these domains have disparate spatiotemporal
scales (Gil et al., 2018). For cyber, the scale and speed of
the decision-making can be faster than human capabilities to
process and understand, requiring human input to guide semi-
automated decision-making and an AI that implements strategies
for offensive and defensive deception. The WMI needs to be able
to display the decision landscape in such a way that a small list
of optimal and near-optimal decision strategies are explainable
(e.g., the decision tree in Figure 3). This should include estimates
of the future states and risk-reward profiles of key agents under
uncertainty (Hare et al., 2020), to allow effective game theoretic
decision-making to be co-developed and mutually understood.

These challenges inform the possible design of effective WMIs.
Namely, we need the capability to ingest information from
disparate sources (including from other nations’ decision aids)
and an architecture that can host the computational power to
integrate this information, while also handling the underlying
AI computations (both for learning and for deployment). We
also need to co-develop an interface and algorithm design
that opportunistically harnesses the strengths and mitigates the
limitations of human and AI agents.

Computationally Informed
Decision-Making
Substantial computation power is needed to process and record
all components, entities and state spaces during complex
decision-making. Past, present, and predictive modeling from
accumulated datasets of dynamic state spaces requires leveraging
HPC resources for generating analytic insights and creating
representations useful in decision-making contexts.

One approach for implementing a HPC analytic workflow
uses Persistence Services Framework (PSF). PSF is a recently
available distributed virtualization solution that enables non-
traditional access to HPC services through a web-based front
end, unlike traditional HPC environments where computational
nodes are allocated to users in batch mode for a specific period
of time. Additionally, PSF provides distributed and continuous
access to data, databases, containerized toolsets, and other hosted
platforms (Su et al., 2021).

In an example PSF approach, a simulation engine connects
to PSF for recording all decisions made by both the humans
and AIs. This allows analysis of the decision-making behavior
occurring during mission planning and COA development, as
well as identification of decision-making patterns and strategies
for developing competitive and realistic wargaming scenarios.
A battlespace visualization platform can be hosted on PSF and use
a messaging protocol to update all connected device interfaces.
State information from the simulation engine can be used for
generating graphical representations of the battlespace and the
engaged operational units.

Using a PSF-approach and taking advantage of HPC
resources allows implementation of AI-assistive decision-making
mechanisms exploiting big data ingests and analytics, while being
available to geographically distributed users for collaborative
decision-making efforts and “always-on” individualized training
and red teaming. A variety of mixed reality display modalities

connected to a PSF-hosting server can support a range of
operational scenarios from command and control at the strategic
level to more mobile tactical use at the operational edge.

Realistic Representations of Decision
Spaces
Graphically representing military decision-making strategies at
all levels of operations requires new visualization approaches
that can be applied to dynamic environments characterized
by changing rules, cognitive states, uncertainty, and individual
biases and heuristics (Dennison et al., 2020; Hung et al.,
2020; Raglin et al., 2020). The visual representation
of a battlespace should be as accurate and realistic as
technologically possible, yet remain at a cognitive level that
is human understandable and interpretable (Kase et al.,
2020; Larkin et al., 2020; Hung et al., 2021). Advanced
visualization approaches that incorporate mixed reality
technologies have the potential to better represent the
changing character of multi-domain warfare and its evolving
threats and dynamic environments. With recent technological
advancements in mixed reality visualization devices, lowered
costs and significantly improved reliability and usability
of hardware, hybrid 2D and 3D visualization approaches
are now possible.

Mixed reality approaches comprised of multiple 2D monitors
augmenting more advanced 3D visualization capabilities can
provide command staff with the necessary insights needed
to understand complex wargaming state spaces (Su et al.,
2021). When a shared battlespace representation is required,
a collaborative strategic planning mode can be achieved
with multiple coordinated views implemented on different
visualization modalities to update interactively based on
distributed command staff inputs.

The BVI (Garneau et al., 2018) platform represents geospatial
terrain information and map images allowing command staff
to build and modify tactical mission plans and COAs. As a
data server, BVI distributes terrain and operational data to
client applications supporting multiple visualization modalities
including Head-Mounted Display devices, web-based interfaces,
mobile Android tablet devices, and mixed reality devices (e.g.,
HoloLens 2, Oculus Quest).

For example, Figure 3 (top) shows a Friendly versus Hostile
wargaming scenario on a high-resolution terrain of the Fort Irwin
National Training Center located in San Bernardino County,
California (Wikipedia, 2021). A 3D view of the battlespace can
offer a more enriched user experience from multiple viewing
perspectives than the traditional 2D map display often used
during MDMP. The 3D view, in BVI’s Web Tactical Planner
(WTP) visualizes spatial information of both terrain and man-
made features and the positions of the units depicted by MIL-
STD 2525C symbols (DOD, 2014). Geospatial perspectives, such
as those offered by BVI, conceivably support decision makers’
understanding of dynamic battlespace environments. Paired with
a navigable AI-augmented decision space (Figure 3, bottom),
the combined perspective can enable better understanding across
visual spatial dependencies, effects and causalities, estimated
risks and values, uncertainty, and deception for complex
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FIGURE 3 | At the top, a 3D view of a friendly vs. hostile wargame scenario in the BVI Web Tactical Planner application. The 3D view offers a more realistic
decision-making perspective than a 2D view, for example, showing the elevations of friendly (blue) and hostile (red) Airborne Early Warning systems (AEWs) and the
surrounding terrain. This enables rapid review of possible sightlines and sensing relative to the surrounding terrain. Below is the AI’s navigable decision tree, providing
transparency to the AI’s calculated risk/reward profiles of a few key choices and how they map onto the terrain. Such abstract decision spaces would also enable
integration of non-spatial decisions, e.g., cyber deception. Dashed lines indicate communication links to friendly AEW and possible jamming of hostile AEW. Images
created by C. Hung.

decision-making. Combining such geospatial and decision-
centric perspectives with AI may provide the necessary breadth
to coordinate physical actions with actions in cyber and other
non-spatial domains across multiple timescales, as well as the
flexibility to adapt quickly to changing mission objectives.

OUTLOOK TOWARD ADVANCING
INTERFACE TECHNOLOGIES FOR
HUMAN-ARTIFICIAL INTELLIGENCE
TEAM DECISION-MAKING

Rapid advances in development of AI and human-AI teaming
require concurrent advances in the development of WMI. As
novel AIs produce better predictions of rewarding COAs and are
better able to tackle complex decision-making, they must also
leverage human expertise to learn how to tackle decisions with
high uncertainty, deception, tacit knowledge, and game theory.
Conversely, the AI’s reasoning must be both abstracted and
relatable to the wargaming environment, to enable transparency
and trust without imposing undue cognitive burden. A WMI that
is based on 3D mixed reality can harness and augment inherent
human capacities for 3D cognition and prediction (Welchman
et al., 2005; Kamitani and Tong, 2006; Kim et al., 2014; Boyce
et al., 2019; Krokos et al., 2019), and if it is appropriately designed,

its interface will feel naturalistic while expanding the capability to
display information from across multiple domains while enabling
the AI to opportunistically learn from the user’s decision-making.

We have highlighted three key areas for development,
namely the AI-directed decision guidance, the computational
infrastructure to support this guidance, and the development
of mixed reality representations for decision transparency.
Advances in these areas require expertise across many different
disciplines. Novel AI development requires the fusion of ideas
from neuroscience, psychology, and mathematics, to overcome
bottlenecks to longstanding problems in complex decision-
making. This includes learning across long timescales and
catastrophic forgetting under changing contexts, as well as
problems more specific to wargaming such as multi-agent
decision-making with uncertainty, deception, and game theory.
The computational infrastructure also needs development, as
computing power and data frameworks are both essential for
producing common operating pictures for human-AI teaming
at the tactical edge. For efficient development, proprietary
restrictions and software dependencies should be abstracted
away via a common framework, with clear documentation for
usage and troubleshooting, to allow academia, government,
and industry to better focus on tackling the human-AI
teaming problem. This common framework should include
efficient passing of information, while providing flexibility and
adaptability to the needs of both the AI development and the
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human user across both training and live-use environments.
Finally, the development of the interface itself needs
concerted expertise across multiple disciplines. A foundational
problem is how to compact information to be efficiently
understood by the user, and how to best harness user
interactions for opportunistic learning. The human mind
does not process all sensory information, but instead makes
predictions and assumptions about the world to economize
its computations under an environment with incomplete
information. An effective WMI should anticipate both
potential decision outcomes as well as individual user
expectations and assumptions. Additionally, the AI decision
aid must estimate what is the user’s tacit understanding,
allowing it to present the most relevant information
and the most promising choices pulled from across the
warfighting domains.

CONCLUSION

Information operations and command and control (C2)
are two capabilities that the United States Army can
provide to allies and partners. In the future operational
environment, we must prepare for not only kinetic operations,
but also hybrid and information-focused warfare. This
requires advances in AI capabilities for complex and
tacit reasoning, advances in systems that can provide
continuous training, distributed hybrid decision-making, and
big data ingestion and analytics, as well as advances in
human-AI collaborative decision-making and opportunistic

learning for continued AI advancement and human-AI co-
adaptation. Each of these advances requires cross-disciplinary
programmatic efforts to overcome complex technological
challenges and to create new principles, theories, and
doctrinal approaches to decision-making, including sustained
development of integrative testbeds and technologies to enable
collaborative and synergistic development across government,
academia, and industry.
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