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1. Introduction 

As part of the DOD’s Artificial Intelligence (AI) strategy,1,2 the US Army Combat 
Capabilities Development Command (DEVCOM) Army Research Laboratory 
(ARL) is developing research programs and technologies based on the Human 
Systems Adaptation strategy, including the goal of developing superhuman 
capabilities based on human–AI team decision-making and mutual adaptation. 
These new capabilities are necessary to address the Army’s Multi-Domain 
Operations (MDO) strategy,3 particularly its Penetrate and Dis-integrate phases 
during which AI-enabled decision aids can augment the commander’s ability to 
tackle the high velocity and volume of information and the complex dynamics of 
the ground, sea, air, space, and cyber domains. A key challenge is that existing AI 
algorithms, including leading AI algorithms that are focused on specific problems 
in AI learning, are woefully inadequate for complex decision-making and have 
limited ability to generalize to MDO-relevant scenarios. Another challenge is that 
existing Army processes for doctrine and decision support do not integrate AI into 
the military decision-making process (MDMP),4 and this gap is just beginning to 
be addressed by the Army’s Automated Planning Framework (APF).5 In addition, 
existing theories and technologies for human–AI team decision-making are limited 
to simple decisions, with very limited ability to provide AI transparency for 
complex decisions in depth, in which multiple dependencies, uncertainties, and 
information domains and actors intersect with complex human, materiel, and 
environmental dynamics. They also have limited ability to synergize with the tacit 
reasoning of human experts. Developing these capabilities requires an integrative 
and multidisciplinary research approach, including the development of AI test-beds 
for novel AI research and human–AI teaming. 

For war-gaming, it is necessary to develop test-beds that can model decision-
making across multiple echelons including tactical and strategic levels. Existing 
war-gaming decision tools such as Opsim,6 AFSIM,7 and OneSAF8 can model and 
simulate many factors across multiple scales to predict outcomes based on 
strategies, materiel capabilities, and resources, but they suffer from the limitations 
of aging systems that can be difficult to learn for experienced Soldiers and that are 
not well suited for developing AI and human+AI teaming capabilities. The recent 
rapid rise in AI capabilities opens up research into the development and 
incorporation of novel AIs as decision aids for war-gaming. Recent improvements 
in AI reasoning (e.g., based on deep reinforcement learning) have been based on 
“open” games in which the state of the environment is perfectly known (e.g., 
checkers, chess, and go).9 They are also based on limited cooperativity or 
deception. Even in cases with additional complexity such as environmental 
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uncertainty (Angry Birds,10 Atari11), there is limited decision complexity, 
flexibility, and transferability to multiplayer war-gaming (e.g., poker, Minecraft, 
Starcraft [Fig. 1]).12,13 Although these models can explore decisions in depth, they 
are limited to conditions in which the potential values of choice outcomes can be 
easily measured and quantified. War-gaming environments pose a difficult and 
unaddressed challenge for AI learning because of the many sources of information 
uncertainty, not just from the environment but also from the human and AI agents. 
AIs need to adapt to changing rules and strategies, to rapidly mitigate unexpected 
hostile capabilities, and exploit new opportunities and friendly capabilities.14 AIs 
also need to mutually adapt with their human teammates, and they need to have 
capabilities for tacit reasoning to synergize with human experts and for 
compensating for individual biases and heuristics5 and changing cognitive states. 
Unlike classical approaches such as game theory, where the expected utilities of 
future states can be explicitly quantified for limited sets of actions depending on 
cooperative or noncooperative choices, war-gaming raises the possibility of 
interactions across environmental and social dynamics (including cooperativity and 
deception) and across multiple spatiotemporal scales and domains, which confound 
the AI’s ability to learn how decisions tie to future state values.15  

 

Fig. 1 ARL Battlespace within the broader AI research strategy 

Addressing this gap requires a sustained foundational research effort with 
experiments focused on discovering principles and developing new algorithmic 
approaches for specific problems in decision-making, and the capability to tie these 
principles and algorithms back to MDO war-gaming. For example, in complex 



 

3 

situations with imperfect knowledge and uncertainty,16,17 an AI that provides a 
landscape of near-optimal solutions may be more helpful than one that provides a 
single “optimal” solution.18 How this problem-solving ties to AI transparency also 
needs to be explored.19,20 Experimentation of conditions such as near-optimality 
and uncertainty with new warfighter machine interfaces (WMIs) can lead to new 
algorithms, universal tools, and principles that better synergize the human+AI 
exploration of complex decisions.21,22  

1.1 Army Relevance and Problem Domain 

Part of the Army’s Strategic Science and Technology (S&T) plan is to develop 
capabilities for “superhuman” decisions and actions.23 For the Human–System 
Adaptation part of the S&T plan, the expected result is a partnership of uniquely 
human capabilities and the emerging capabilities of machines to maximize the 
speed and options to effectively respond to the complexity, intelligence, and 
dynamics projected in future sociotechnological environments of 2035 and beyond. 
It is expected that these research efforts will create new capabilities for human-
guided machine adaptation, training of technology-savvy Soldiers, hybrid human-
machine thinking, and next-generation human-systems integration and systems-
level analysis capabilities. Because of the rapid ongoing changes to warfare, 
including constant technological change, achieving such capabilities requires 
developing a research program to advance AI and human-AI teaming specifically 
for complex decision-making. 

As part of DEVCOM Army Research Laboratory’s Director’s Future Ventures 
(DFV) program, this project’s goal was to develop an interdisciplinary program to 
address the gaps in the complexity of AI decision-making and in human–AI team 
decision-making. This included developing an AI research test-bed, ARL 
Battlespace, to abstract complex war-gaming decision-making to key elements so 
that AI and human–AI teaming development can focus specifically on the complex 
decision-making processes themselves, while avoiding the computational and 
conceptual limitations of physical realism and of present-day materiel and doctrine. 
This also included creating novel concepts for how to develop human–AI 
collaborative decision-making, to understand how to shape the information flow to 
enable mutual human–AI decision transparency, and to enable mutual adaptive 
learning under conditions in which both humans and AI have difficulty sifting 
through uncertainty and deception. Both explicit and implicit decision-making 
frameworks needed to be accessible via this abstract war-gaming test-bed so that 
AIs could learn and be challenged across multiple levels of reasoning. An 
appropriate level of abstraction was also needed to enable multiple types of 
research, including academic research at the intersection of neuroscience, AI, and 
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decision theory, to advance the capabilities and complexity of AI decision-making 
and to improve its translation to military relevance. 

1.2  Long-Term Goal 

It is envisioned that in the Army of 2035 and beyond, command-and-control (C2) 
decisions are invigorated by decision aids that harness distributed AI capabilities 
across multiple echelons and that ingest data across all domains with complexity 
and speed that would overwhelm unaided Soldiers. The AI-enabled decision aids 
would enable forward-simulation and distributed training for the battlespace; 
enable adaptation and forward-projection of the possible effects of changes in 
conditions, friendly and hostile strategies, and capabilities during the Penetrate and 
Dis-Integrate phases of MDO; and enable after-action review of key decisions. The 
AI would provide transparency into its decision-making by enabling interactive 
visualization of both real and abstract decision spaces optimized for the 
individualized Soldier and situational context aligned to Army doctrines and 
shaping future doctrine. Conversely, the AI would co-adapt to the Soldier, learning 
how to navigate through complex decisions with insufficient, conflicting, or 
deceptive information, and reshape, refine, and present information for effective 
team decision-making. With AI agents as partners for the effective transformation 
and actionalization of data and leveraging of explicit and tacit knowledge, it is 
expected that distributed C2 commanders will be able to co-develop and coordinate 
courses of action across the many spatiotemporal scales and dimensions of MDO, 
and that the cross-domain interactions in tactics and strategy will be forward-
simulated with increased resiliency to the dynamics of the environment, people, 
and strategies. In addition to the increased capabilities for complex decision-
making, it is expected that the decision-making process itself will be accelerated by 
removing tedious calculations and other delays so that plans and strategies can 
adapt faster than real time to ever-changing battlefield and external (e.g., 
diplomatic, economic) factors. 

To realize this future, the long-term goal of a program to develop novel AI for 
complex decision-making is to leverage continued advances across multiple 
disciplines. The development of “core AI” for reasoning, while rapidly progressing 
for simple decision-making, requires continued synergistic innovation and research 
from fields such as neuroscience and psychology to develop novel theories for 
reinforcement learning under conditions when the reward is difficult to assign to 
specific events or actions (e.g., because it was unclear to what degree of certainty 
who, what, when, where, or why to attribute the cause of the reward). Theories at 
the mechanistic level (e.g., how neuroglial networks may support tying disparate 
events to rewards) and at higher levels (e.g., how social rules can shape learning) 
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are needed to bridge the gap between the present limited capabilities of core AI and 
the needs of C2 decision-making. Synergistic innovation and research are also 
needed to integrate the AI development with Soldiers’ tacit reasoning processes to 
enable meta-learning and metareasoning of how decisions interact.  

1.3  Objective of the DFV Project 

The ARL DFV program is a mechanism designed to promote new directions in 
cross-disciplinary basic and applied research, address research gaps, and create new 
capabilities for the Army’s mission. DEVCOM ARL fellows identified the Science 
of Analysis as one area of capabilities needed, with the potential for high payoff 
and the need for reimagining and expansion of existing programs and the need for 
new programs to establish new core competencies and to build up in-house 
expertise. 

To create these capabilities, this DFV project had the primary objective of creating 
a new research program to develop novel AI for complex reasoning for C2 decision 
aids. This included developing an AI test-bed, ARL Battlespace,24 to enable flexible 
development of novel AIs for complex reasoning specifically for MDO C2 
decision-making. Existing war-gaming AI test-beds tend to be limited to simpler 
decisions, focusing more on tactical ground operations. For example, ongoing AI 
test-bed development efforts such as ARL Simple Yeho AI test-bed are focused on 
environmental realism, with multiple map layers including roads, foliage, and 
elevation to recommend decisions to a platoon commander for tasks such as route 
planning and Solder retasking. Because of the focus on the local terrain 
environment, the AI reasoning developed in that environment will be focused on 
fine-scale social and ecological dynamics, with sparser opportunities for in-depth 
training on collaborative and hostile decision dynamics. These problems of 
sparseness and complexity (“dinky, dirty, dynamic, and deceptive data”25) have 
confounded classic approaches to develop AI, especially for complex reasoning. 
Conversely, this DFV project’s ARL Battlespace AI test-bed abstracts away the 
elements of local terrain to focus the AI learning and reasoning more specifically 
on complex MDO-relevant C2 reasoning in depth (multiple decision steps including 
more frequent opportunities for collaboration and deception). This enables more 
focused development of AI capabilities for complex multiagent (human, AI, and 
human+AI team) decision-making under C2 war-gaming contexts. 

A second objective was to develop the conditions for effective human–AI teaming 
for complex decision-making by developing an effective WMI to research and 
develop how to present the AI’s understanding and predictions and how to harness 
the human’s understanding and predictions. This effort included leveraging and 
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developing high-performance computing (HPC) resources for computational 
support, coupled with development of custom software for commercial 2D 
interfaces and mixed reality interfaces for decision-making (e.g., the Battlespace 
Visualization and Interaction (BVI) platform, based on the Augmented REality 
Sandtable [ARES] platform).26 By developing multiple WMI approaches, we 
expected that these platforms would enable rapid prototyping research for complex 
decision-making as well as enable integration of our novel AIs with more 
established frameworks and teams for war-gaming training and simulation. 

Together, we expected that these efforts in novel AI development, HPC 
computational support, and WMI development for realistic representations of 
decision spaces will create a new paradigm for development of human–AI teaming, 
paving the way for future advancement and modernization of multiple Army 
doctrines (MDMP, DOTMLPF,27 METT-TC28) (Fig. 2). 

 

Fig. 2 Novel AI development within a broader human–agent team decision-making 
research strategy 

This project resulted in the development of two research frameworks. First, it 
developed an AI test-bed, known as ARL Battlespace, for creating and investigating 
AIs for complex collaborative and hostile decision-making. Second, it recognized 
limitations in the current military decision-making process by conceptualizing a 
WMI for human–AI collaborative complex decision-making leveraging an Army 
and commercially developed battlespace visualization platform with potential 
connections to nontraditional HPC resources for enabling AI-enhanced war-
gaming.
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2. ARL Battlespace AI Test-Bed 

Here, we describe our approach toward developing ARL Battlespace, an open-
source flexible war-gaming platform that will lead to the development of novel 
reinforcement learning algorithms for decision aids.29 Unlike other AI war-gaming 
approaches, our focus is on multiplayer decision-making. In particular, we are 
focusing on the gap in the theory and algorithmic capabilities for game theory with 
three or more cooperative and adversarial players. Whereas game theory concepts, 
such as Prisoner’s Dilemma and Brinksmanship (“chicken”), are well developed 
for two players, they are not yet extended to three or more players, where the 
decision landscape can be complex due to saddle points and local minima that can 
confound efforts for reinforcement learning. Understanding and predicting Nash 
equilibria for three or more cooperative and adversarial players, under scenarios 
that are likely to emerge in warfare, require a flexible war-gaming platform that 
allows for the interdisciplinary exploration of such decision spaces. The war-
gaming platform would also need to enable the development, understanding, and 
discovery of novel interactions and synergies between the players and the AI that 
enable the human to use the AI to quickly find optimal and near-optimal solutions. 
These solutions would enable the AI to learn from human patterns of decision-
making and how to optimize its search of the decision space. 

2.1 Framework 

To enable these solutions, we developed a chess-like board game consisting of two 
teams, a red force and a blue force, where each team can have multiple coalitions 
(players) per team. The game is played on a common battlespace that is currently 
designed as a set of boards for each domain of the MDO. An example of the set of 
game boards is shown in Fig. 3, where we have considered an “Air” and a “Land” 
board. Each board is gridded into a set of cells, and the “Air” board is laid over the 
“Land” board to form a common battlespace. In this example, we have chosen to 
create square grids and only consider two domains. However, in general, the 
tessellation of the board can take any shape and be made arbitrarily small, while 
the number of boards is flexible to handle every domain in the MDO. For example, 
the “Air” board can consist of multiple boards that represent various levels of 
elevation. This formulation provides a general application programming interface 
(API) that allows for fundamental research advances in war-gaming since it can be 
customized to fit any war-gaming scenario.  
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Fig. 3 ARL Battlespace AI test-bed for complex decision-making 

Each coalition is assumed to have a set of pieces, which we call Units. Currently, 
we assume that there are four ground units and one air unit. The ground units consist 
of a Soldier, Tank, Truck, and a Flag, while the air unit is an Airplane. Each ground 
unit currently has the same capabilities (i.e., same set of actions and viewshed). 
However, the API is designed to enable customized capabilities for each unit of the 
coalition, making it easy to design specific scenarios.  

The current rules and actions of the units are as follows. The Soldier, Tank, and 
Truck each have an orientation that describes their heading. Their actions consist 
of “doNothing”, “turnH”, “advance1”, “shoot”, and “ram”. “doNothing” implies 
that the unit stays in their location and does not change their orientation. “turnH” 
rotates the unit’s orientation by H degrees, where H∈{-135,-90,-
45,45,90,135,180}. “advance1” moves the unit one cell forward in the direction of 
their orientation. “shoot” shoots a projectile in the direction of the unit’s orientation, 
where the projectile continues to advance by one cell forward until it either collides 
with another unit or travels outside of the game board. Finally, the “ram” action 
advances the unit one cell forward in the direction of its orientation, while attacking. 
The “ram” action is always advantageous as compared to the “advance1” action, 
since attacking can eliminate enemy units.  

The Airplane unit has similar rules and actions as the Soldier, Tank, and Truck. 
These are “doNothing”, “turnH”, “advanceX,Y”, “shoot”, and “bomb”. The actions 
“doNothing”, “turnH”, and “shoot” are the same as the ground units. The action 
“advanceX,Y” allows the unit to move X cells along the East–West axis and Y cells 
along the North–South axis. The Airplane can also “ascend” and “descend” to take 
off and land. Finally, the “bomb” action shoots a projectile directly below the 
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airplane onto the land game board. The Flag units are unable to move and are 
removed if they are captured.  

The current implementation of the game play is simple. Initially, each coalition 
(player) places its units on their section of the game board. When there are multiple 
coalitions per team, the teams’ portion of the game board is divided evenly between 
the coalitions. Note that the location of each unit is unknown to all the other 
coalitions. Then, each unit observes if there are any other units within its visible 
range, providing a fog-of-war scenario. We defined the observation range of each 
unit as one square from the unit’s current location; however, the visible range can 
be customized according to the scenario and unit. Once each unit observes, the 
coalitions on the same team collaborate to identify the set of actions they would 
like to take for each of their units. This allows each coalition to observe their 
teammates’ unit positions as well as communicate to coordinate their plans. Next, 
each coalition selects an action for each unit. Note that the actions chosen are only 
known to coalitions belonging to the same team. After the actions are chosen, a 
game resolution is applied that moves the units according to their selected actions 
and resolves whether any units have been attacked or collided with another. If a 
unit is attacked or collided with another unit, it is removed from the board. This 
process is repeated until the game is complete.  

Completing the game depends on the underlying rules of the game, which are 
customizable to specific scenarios. Here, we studied two types of games: (1) 
Capture the Flag and (2) Annihilation. The goal of Capture the Flag is to maneuver 
the ground units into the enemy territory to capture the opposing team’s flags, 
where the flag locations are unknown and must be discovered by exploration. The 
game is terminated once all the enemy flags are captured. The goal of Annihilation 
is to discover and attack all the enemy ground units. Here, the game is terminated 
once all the enemy ground units are discovered and eliminated. The underlying 
rules of each game are the same, but the best strategies for achieving each goal are 
different. In both types of games, there is high uncertainty due to limited visibility 
of enemy units and flags. 

2.2 Pilot Experiment with Hierarchical Bayesian Modeling 

Next, we report our initial results in developing an AI agent based on the idea of 
imitation learning using hierarchical Bayesian modeling constructed from human 
demonstrations. We start with a discussion of the data collection process, provide 
an analysis of the data, and finish with a heuristic approach that allows a simple AI 
agent to outperform a random agent.  
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2.2.1 Experimental Design 

To learn human strategies, we had five human subjects combinatorially pair up 
together and play ARL Battlespace against two random agents for the two types of 
games discussed in Section 2.1 (i.e., Capture the Flag and Annihilation). During 
each turn, each random agent chooses an action for each unit i based on a fixed 
categorical distribution where the probability of taking an action 𝐴𝐴𝑘𝑘𝑖𝑖 ∈ �𝑎𝑎1𝑖𝑖 , … , 𝑎𝑎𝐾𝐾𝑖𝑖

𝑖𝑖 � 
is 𝑃𝑃�𝐴𝐴𝑘𝑘𝑖𝑖 � = 𝜋𝜋𝑘𝑘𝑖𝑖  and 𝐾𝐾𝑖𝑖 depends on the number of actions that unit 𝑖𝑖 can take. Recall 
that the actions for each unit are described in Section 2.1.  

Each game consisted of a pair of two human subjects versus two random agents, 
where at the beginning of each game, the human subjects collaboratively discussed 
their overall strategy for that game type. This led to the collection of 20 games, with 
10 each for Capture the Flag and Annihilation, respectively. Once all the games 
were conducted, the game play data was analyzed to identify the human strategies. 

2.2.2 Game Data Results and Analysis 

The first approach to analyzing the game data was to study the frequency of actions 
taken by the human players. The frequency of actions is defined as 

𝑃𝑃�𝐴𝐴𝑘𝑘𝑖𝑖 |𝐷𝐷� =
𝑁𝑁�𝐴𝐴𝑘𝑘𝑖𝑖 �
𝑇𝑇(𝐷𝐷) , 

where D represents the game data for either Capture the Flag or Annihilation, 
𝑁𝑁(𝐴𝐴𝑘𝑘𝑖𝑖 ) is the number of times an action was taken by unit 𝑖𝑖 over all the games, and 
𝑇𝑇(𝐷𝐷)is the total number of turns taken in all the games.  

The frequency of actions is shown in Fig. 4 for the ground units (i.e., Soldier, Tank, 
and Truck) while Fig. 5 shows the action probabilities of the air unit (i.e., Airplane). 
The overall goal of the game dictates the action chosen, allowing us to determine 
the type of game being played. As seen in Fig. 4, the ground units of the Capture 
the Flag game are more likely to choose an advance and attack approach to search 
for the flag using the “ram” action. Additionally, an action of “doNothing” is also 
chosen more frequently. This is because once the flag is found by the team, the unit 
closest to the flag takes an action to purse it, while the remaining units do nothing. 
For the air unit, the human subjects were more likely to choose an “advance0,-2” 
action, which advances the unit into enemy territory to search for the flag.  
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Fig. 4 The probability of an action conditioned on the type of game for all ground units 
generated from human game play 

 

Fig. 5 The probability of an action conditioned on the type of game for air units generated 
from human game play 

In the Annihilation game, the human agents were more likely to choose an attack 
action to eliminate the enemy targets (i.e., “shoot” for the ground units and “shoot” 
and “bomb” for the air unit). To further validate this strategy, the cumulative sum 
of the average number of projectiles per turn is shown in Fig. 6. Clearly, the 
Annihilation game results in a larger number of projectiles over the Capture the 
Flag games.  

 

Fig. 6 The cumulative sum of the average of the total number of projectiles alive during 
each turn 
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Another difference between the two games is that the total number of turns for the 
Capture the Flag game is much less than for the Annihilation game. This is because 
the human agents are able to find the flags faster than they are able to find the 
enemy units and eliminate them.  

Based on this simple understanding of how the human agents play the game against 
the random agents, we can follow a similar approach to learn the strategies to 
develop heuristics for a simple AI agent.  

2.2.3 Performance of a Simple AI Agent Learning from Human 
Demonstrations 

The algorithm for a simple AI agent is as follows. Initially, the agents randomly 
place their units in their designated areas of the board. Then, each agent identifies 
the state of each unit. Given the state and the goal of the game, the agent draws an 
action for each unit from a predefined probability distribution 𝑃𝑃(𝐴𝐴𝑖𝑖|𝑆𝑆𝑖𝑖 ,𝐷𝐷). This 
process is repeated during each turn until the game is over.  

The predefined probability distribution follows a hierarchical Bayesian model. For 
ease of presentation, we have provided the theory in the Appendix. For the simplest 
case, we considered that the units could be in two possible states during each turn,  
𝑠𝑠1 = 𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴 or 𝑠𝑠2 = 𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷. The probability distribution 𝑃𝑃(𝐴𝐴𝑖𝑖|𝑆𝑆𝑖𝑖 ,𝐷𝐷) is then defined 
according to Eq. A-1 in the Appendix and is similar to the frequency of actions 
presented in Figs. 4 and 5. We then implemented this distribution into two simple 
AI agents and played them against two random agents. As a baseline performance, 
we compared this against two random agents. In both cases, 1000 games were 
played, and the winning percentage was computed. By using the two-state 
probability distribution, the simple AI agents were able to win the game 84.5% of 
the time for the Capture the Flag games and 76.9% of the time for the Annihilation 
games.  

Next, we considered a larger nine-state state space for each unit i defined as 𝑆𝑆𝑖𝑖 =
{(𝐹𝐹𝐹𝐹0,𝐸𝐸0,𝐹𝐹𝐴𝐴0), (𝐹𝐹𝐹𝐹1,𝐸𝐸0,𝐹𝐹𝐴𝐴0), (𝐹𝐹𝐹𝐹0,𝐸𝐸1,𝐹𝐹𝐴𝐴0), (𝐹𝐹𝐹𝐹0,𝐸𝐸0,𝐹𝐹𝐴𝐴1), (𝐹𝐹𝐹𝐹1,𝐸𝐸1,𝐹𝐹𝐴𝐴0),
(𝐹𝐹𝐹𝐹1,𝐸𝐸0,𝐹𝐹𝐴𝐴1), (𝐹𝐹𝐹𝐹0,𝐸𝐸1,𝐹𝐹𝐴𝐴1), (𝐹𝐹𝐹𝐹1,𝐸𝐸1,𝐹𝐹𝐴𝐴1),𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷}, where 𝐹𝐹𝐹𝐹0 and 𝐹𝐹𝐹𝐹1 indicate 
if a friendly unit is observed by unit i or not, respectively; 𝐸𝐸0 and 𝐸𝐸1 represent if 
an enemy unit is observed by unit i or not, respectively; and 𝐹𝐹𝐴𝐴0 and 𝐹𝐹𝐴𝐴1 are 
whether the team has seen an enemy flag or not, respectively. Again, the probability 
distribution 𝑃𝑃(𝐴𝐴𝑖𝑖|𝑆𝑆𝑖𝑖 ,𝐷𝐷) is then defined according to Eq. A-1 in the Appendix and 
implemented into two simple AI agents. The winning proportion of the simple AI 
agents against two random agents was 89.4% for the Capture the Flag game and 
82.3% for the Annihilation game.  
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A summary of the results is presented in Fig. 7. Interestingly, in both forms of the 
probability distribution 𝑃𝑃�𝐴𝐴𝑖𝑖�𝑆𝑆𝑖𝑖 ,𝐷𝐷� (i.e., the two-state distribution and the nine-
state distribution), the Capture the Flag strategy outperforms the Annihilation 
strategy. This is because the agents in the Annihilation game are more likely to 
select the “shoot” action, which results in more friendly fires due to random initial 
placement. Therefore, it is more advantageous to take an attack-and-advance 
approach as a simple AI agent. Furthermore, the winning percentage increases as 
we considered additional states of the units. A possible direction for future work is 
to develop deep reinforcement learning strategies that will learn the definition and 
number of states needed to maximize the winning proportion, even against human 
agents, to provide suggestions for C2 in MDO.  

 

Fig. 7 Winning proportions of the simple AI agents 

3. Example Scenarios with Complex Decision-Making 

The key strength of the ARL Battlespace test-bed is its flexibility and adaptability 
to changing needs for MDO mission planning. Its abstract quality enables key 
decision processes and their interactions and dynamics to be compressed into a 
smaller gameboard and with more quantifiable human–AI interactions for 
development of AI for human–AI teaming. This enables the AI development to 
focus on the challenges of reward shaping for complex decision-making while 
reducing the impediments to learning that are due to nuisance factors (e.g., 
spatiotemporal scaling) which sparsify the decisions in time and space so that more 
effort (on the part of the AI as well as the AI developer) can be directed toward 
learning under uncertainty and deception at a variety of spatiotemporal scales. It 
also puts aside qualities of war-gaming interactions that may not be easily 
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integrated into human–AI teaming (e.g., aspects of human psychology such as 
personal relationships) in favor of more tractable progress on AI reasoning 
development. In the following section we present a few example scenarios for 
challenging and developing AI for complex reasoning. These include examples 
with game theory, metareasoning, and cyber deception, touching on the variety of 
complex decisions not yet tackled or solved by existing AI algorithms. Because an 
AI-enabled C2 decision aid would be expected to exceed human-level decision-
making, not just in speed but also in complexity, it is envisioned that such a C2 
decision aid needs to be capable of solving most if not all these scenarios.  

3.1 Breaching Scenario and Reimagining Game Theory 

We begin by focusing on the gap between game theory and war-gaming in a simple 
breaching scenario, which is a classic problem in war-gaming that is often 
encountered (e.g., at bridge crossings, mine fields, and mountain passes [Fig. 8]). 
In the classic game theory concept of Brinksmanship (“chicken”), the friendly blue 
and green tanks are incentivized to cross the gap to reach the other side. Normally 
these tanks would coordinate their actions, but if the communication between the 
blue and green tanks is disrupted, the action of one unit (e.g., the blue tank) may 
lead to low payoff due to collision or friendly fire with another unit (the green tank). 
The scenario rapidly advances beyond classic game theory if it also includes 
elements of Prisoner’s Dilemma, as it may be necessary for both the green and blue 
tanks to cross together to jointly attack the stronger red tank, requiring careful 
coordination. The presence of additional units (e.g., the green airplane providing 
observation, bombing, or jamming of hostile units such as the yellow Soldier 
providing possible reinforcement) enables further manipulation of dynamics and 
environmental constraints or opportunities on the decision-making. The airplane 
may also discover a second gap, or the “wall” may be permeable to create gaps 
(e.g., clearing the mines or establishing additional bridge crossings). 

Behaviors learned at a coarse scale (e.g., 10×10 board) and context can be gradually 
generalized to finer scales and other contexts via reward shaping. Additional map 
layers can also be added for domains such as rapid underground transport to bypass 
walls in the ground layer. Environmental factors such as weather can also be 
included to alter maneuverability. Thus, even an apparently simple scenario can 
provide rich opportunities for manipulating factors that affect decision-dynamics 
and outcomes, and for exploring how interactions across different types of 
uncertainty can alter the decision landscape to create saddle points and local 
minima that can confound efforts at reinforcement learning. Understanding and 
predicting Nash equilibria for three or more cooperative and adversarial players, 
under scenarios that are likely to emerge in warfare, requires a flexible war-gaming 
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platform that allows for the interdisciplinary exploration of such decision spaces. 
The war-gaming platform would also need to enable the development, 
understanding, and discovery of novel interactions and synergies between the 
players and the AI that enable the human to use the AI to quickly find optimal and 
near-optimal solutions. These solutions would enable the AI to learn from human 
patterns of decision-making and how to optimize its search of decision space. 

 

Fig. 8 Breaching scenario with enriched game theory conditions 

3.2 Metareasoning Scenario, Mission Context, and Strategy 

In the ARL Battlespace game, each player has a colored flag, and the game can be 
won by either annihilating all opposing ground units or by capturing all flags of the 
opposing team (a real-life equivalent is capturing all the key bridges or command 
centers). Depending on the state of the game, a commander may decide to alter the 
overall strategy (Annihilation vs. Capture the Flag) to achieve the win more 
quickly. For example, if one tank is already nearing one flag, it may be 
advantageous to redirect the remaining units to search elsewhere for the remaining 
flag (Fig. 9). Conversely, if a hostile unit is guarding the first flag, it may be better 
to prioritize capturing that flag so that the search for the second flag can be more 
efficient. This unarticulated reasoning, or “tacit reasoning”, is often engrained in 
naturalistic human decision-making, and it is an AI capability that needs to be 
developed so that AI can participate effectively in human–AI team decision-making 
and so that AI development can begin to have tools to aspire for the creativity of 
human decision-making.  
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Fig. 9 Metareasoning flag scenario with tacit reasoning and task reallocation 

For AI development, this would require that an additional higher-level reasoning 
agent be constantly monitoring the state of the game to make choices for switching 
strategies and to communicate this to the agents controlling the individual units. 
Metareasoning includes processes to monitor the steps involved in reasoning and 
to balance the criteria that factor into the outcome of the activity. In addition, 
metareasoning incorporates the uncertainties of different information to produce 
more meaningful and contextually appropriate decision recommendations. 
Incorporating metareasoning can allow constraints and various decision-making 
approaches to be weighed to provide different options for courses of action. For 
example, alternative metareasoning-based choices could decide whether to 
prioritize exploration versus attacking known hostile units versus defense, which 
maneuver strategy to deploy, or how to reallocate tasks given the observable 
positions of hostile forces. Because of the small grid size of the ARL Battlespace 
environment, the games can be played quickly, resulting in frequent opportunities 
for metareasoning to be used and opportunities for AI to learn to combine and 
predict interactions across multiple types of metareasoning approaches. Because 
the abstract environment increases the frequency of opportunities for the AI to learn 
how strategies interact, this would enable AIs to learn higher-order strategies such 
as the need to balance interactions across strategies, capabilities, and task 
requirements, to maintain freedom of choice and to produce strategic ambiguity to 
confound the opposition. Overall, the benefit of this approach is the improvements 
to decisions by adding the control and monitoring mechanisms that come with 
including a metareasoning agent that balances the actions and the environmental 
constraints. 

3.3 Simple Deception and AI Theory of Mind 

A key aspect of adversarial decision-making, particularly in warfare, is deception. 
Deception can occur across multiple levels including strategy, observable 
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information, and unit capabilities and locations. The limited observability of units 
in ARL Battlespace naturally creates opportunities for deception, and the capability 
of airplanes to explore deep in hostile space provides opportunities to uncover 
deception about unit positions. Figure 10 illustrates an example of a simple 
deception scenario in which the friendly blue and green units attempt to cross to the 
other side. The friendly Soldiers at the lower left begin by firing missiles through 
the left gap because their agents reason (via AI Theory of Mind of the opposing 
agents30) that, upon seeing the missiles, the hostile agents will infer that the friendly 
forces are preparing to attack through that gap. This deception, by focusing the 
hostile agent’s attention and planning to the left gap, biases them away from the 
right gap and creates an opportunity for the blue and green tank to enter from the 
right. By designing the scenario with two gaps, the scenario builds upon the two-
alternative-forced-choice tasks of classic psychology, enabling the application of 
sensitive psychological tools for decision analysis and the development of animal 
models for neurophysiological and behavioral dissection of the underlying cellular 
and molecular mechanisms that govern context-dependent learning and decision-
making31 for deception. For example, one could introduce factors to bias the 
friendly or hostile decision-making (e.g., by manipulating the noisiness of sensors 
or by manipulating commands from headquarters), or apply methods such as 
optogenetics and chemogenetic tools to understand how the neural representation 
of others’ perceptions, beliefs, or strategies (e.g., in the anterior cingulate and 
orbitofrontal cortex) contribute to decision-making computations (in the prefrontal 
cortex).32,33 Such investigation could also uncover factors that determine single-
mindedness, heuristics, and implicit bias versus openess to alternative hypotheses, 
which could help determine how best to reallocate tasks under specific conditions 
(e.g., when an individual is biased toward hierarchical command structure, he may 
be less open to pursuing sensor evidence that contradicts commands from 
headquarters). Such inherent biases, heuristics, and tacit reasoning are a natural 
component of human reasoning34 and are anticipated in our interactions with others; 
it may be beneficial for AI theory of mind to include such bias compensation and 
expectations to optimize human+AI teaming. 
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Fig. 10 Simple deception scenario requiring AI Theory of Mind 

3.4 Cyber Deception, Multi-Domain Integration, and 
Believability 

In human decision-making, information from different domains can combine to 
produce unexpected effects. The psychological McGurk effect35 is when a strong 
temporal synchrony between the mouth gesture “ga” and the auditory syllable “ba” 
combine to produce the illusory percept “da”. Although multisensory integration 
does not appear to have been explored in C2 decision-making, the confluence 
across multiple domains in MDO, particularly its high volume and velocity in the 
Penetrate and Dis-integrate phases, may produce unexpected nonlinear cross-
domain interactions (this may contribute to the “fog of war”). Figure 11 illustrates 
an example in which a combination of actual evidence (missiles) and tank decoys 
(resulting from a man-in-the-middle [MITM] cyber attack) could synergize to 
compel the hostile units toward the left gap. It is a general strategy to create 
converging lines of evidence for cyber deception, yet specific patterns of deception 
may be more effective than others. For example, the brain is thought to group 
similar or related evidence into chunks for efficient processing (e.g., Gestalt 
grouping) so that it can overcome information bottlenecks (e.g., process more than 
seven nominal items, thereby reducing the impact of individual items). If carrying 
out each instance of cyber attack incurred a certain cost or risk, it may be beneficial 
to understand how to distribute these costs across cue signatures to deliver the most 
effective impact with minimal risk (e.g., the MITM attack would probably be less 
effective, or even counteractive, if it produced missile decoys). It may also be 
informative to understand how different combinations of cues may be differentially 
perceived by different Soldiers. Commanders with different biases or at different 
roles or echelons may perceive, interpret, or act differently on the same 
combination of evidence (e.g., a decoy’s effectiveness is likely to depend on its 
distance to a target commander and relevance to his decision process). More 
advanced strategies may include active defense (e.g., via a “honeypot” strategy 
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[Fig. 12]) to improve the effectiveness of the cyber deception.36 To deliver 
superhuman capabilities for MDO, an AI decision aid may need to assist in 
generating believable decoys across multiple domains based on the instantaneously 
available evidence, rapidly adapt these presentations at the speed of cyber networks, 
and maintain coherence between the virtual and real worlds in order to maintain the 
effectiveness of the illusion. 

 

Fig. 11 Cyber scenario with man-in-the-middle attack 

 

Fig. 12 Cyber scenario with honeypot
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4. Human-AI Collaborative Complex Decision-Making 

The ARL Battlespace AI test-bed described in the previous section offers the 
flexibility needed for AI development and testing by abstracting the battlespace 
terrain into a grid-like environment without realistic representation. For example, 
Fig. 8 shows a wall-like obstacle represented as several grid blocks associated with 
an environmental constraint condition applied during unit interaction. Both human 
teams and AIs play the game within the common bi-level gridded battlespace. The 
human players interact with ARL Battlespace by inputting text-based coded 
commands in a console window. This command line interaction and display 
accelerates the AI algorithm development process and sets up potential connections 
to computing resources for large-scale real-time calculations required for AI-
enabled war-gaming. Conceptualizing a user interface for an AI war-gaming test-
bed, such as ARL Battlespace, and establishing pipelines to external computing 
services constitute the foundational components of the second objective of the 
DFV—to develop a WMI for complex decision-making.  

A model of the military decision-making process across echelons and operational 
levels forms the basis for developing an effective WMI for human and AI war-
gaming. In traditional war-gaming, commanders utilize a common map-based 
operational terrain and model how combinations of factors within the MDMP 
produce courses of action (COAs), possible counter-actions, resource usage 
estimates, and predicted outcomes.4 Over days or weeks, the MDMP process leads 
to a refined set of COAs that make certain assumptions about the operating 
environment, including terrain, weather, and the availability and capabilities of 
units in setting the theater (i.e., shaping activity in support of major combat 
operations).  

Although MDMP assists command staff in understanding an operational 
environment and considering an operational approach, the process has many 
limitations such as time intensiveness, rigidity of the assumptions, limited 
opportunities for training across scenario variations, and few opportunities for 
integrating AI guidance into the decision-making process. Traditionally, the 
success of a mission is directly related to the ability of command to execute the 
MDMP. However, given the increased complexity of MDO with its vast array of 
mission command systems and processes, integration and synchronization of all 
activities associated with operations are becoming increasingly difficult to the point 
of humanly impossible. The lack of planning expertise resulting from a deficient 
MDMP can lead to desynchronized and dischordant operations and ultimately cost 
the lives of Soldiers. 
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The ability to visualize the battlespace is not specifically described in the MDMP, 
yet it obviously plays an important role in the decision-making process. Recently, 
new systems and technologies integrating advanced visualization capabilities have 
been developed that improve situational awareness and therefore enhance decision-
making processes. Army examples include Nett Warrior,37 which enables 
dismounted warriors to visualize nearby friendly and hostile forces while 
collaboratively planning tactical missions based on the local terrain. Although this 
technology extends the radio and digital mapping to the dismounted warrior, it lacks 
an underlying AI engine to provide decision assistance. BVI is another example of 
Army technology that enables distributed collaboration for mission planning with 
both 2D and 3D visualization capabilities of a common operating picture from 
arbitrary viewpoints and a wide selection of devices.38 The BVI architecture can be 
formulated to pull in external computing services such as analytic pipelines, 
models, and AI engines.  

Currently, MDMP does not incorporate AI guidance into the overall mission 
planning approach. The Army’s APF5 begins to address AI-assistive decision-
making by inserting autonomous technologies into the MDMP workflow. 
Command staff can receive contextual assistance during mission planning and 
COA development through APF’s digital plan representation, plan creator, and plan 
monitor tools. Mission execution and estimation capabilities provide automated 
assistance for improved decision tracking and support activities by monitoring 
planned versus actual progress of the mission. Although APF introduces a 
foundational level of automation into the MDMP, it lacks the advanced 
visualization and user interaction capabilities offered by Nett Warrior and BVI. 

Aside from MDMP, recent efforts to integrate AI into the decision-making process 
have included a number of approaches,12 with some success in modeling the human 
decision-making process. In general, AI has had some success for problems with 
limited decision variables, such as resource allocation,6 flight simulators,39 and 
simpler scenarios. Ongoing challenges include the need to improve the capability 
of AI to tackle complex decisions with multiple actors, incomplete and possibly 
conflicting or deceptive information, changing unit action and environmental 
properties, and the need to visualize the consequences of these decisions across 
many spatial and temporal scales. 

4.1 Required Advancements for Future MDMP 

MDMP limitations to support complex decision-making for MDO highlight the 
need for improvement in three areas. First, there is a need to integrate AI-generated 
guidance and assistive decision-making support into the MDMP. This includes both 
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further development and integration of AI into battlespace decision planning, as 
well as further improvements in the explainability and transparency of the AI’s 
decision-making process.20 Second, there is a need to integrate the decision 
analytics with the power of HPC at the strategic level as well as the tactical edge 
when possible. This would enable leveraging the power of an HPC system to 
improve modeling, analytics, and computation time, while integrating and 
synchronizing information from across all theater domains. Finally, there is a need 
to develop more accurate and interactive representations of the decision space using 
advanced visualization technologies such as mixed reality. Rather than simply 
displaying a 2D rendering of the terrain at a fixed timescale, there is a need to 
visualize how decisions across different domains interact and leverage mixed 
reality to both improve the throughput and depth of the understanding and enable 
insights not possible with flat displays. 

The MDMP lays at the core of the Army’s design methodology for applying critical 
and creative thinking to understand, visualize, and describe problems and 
approaches for solving them. As the proven analytical process for problem solving, 
limitations of the MDMP as described previously must be overcome in order to 
quickly develop a flexible, tactically sound, and fully integrated and synchronized 
plan that increases the likelihood of mission success with the fewest casualties. The 
following subsections describe potential improvements to the MDMP to support 
human–AI collaborative decision-making. 

4.1.1 AI-Directed Decisional Guidance 

Novel AI-enabled WMIs are needed to both leverage ongoing advances in AI 
decision-making and contribute to AI learning for complex adaptive decision-
making. The development of AI decision aids will provide increasingly capable 
suggestions of possible COAs by pooling information across all domains and 
computing risks and expected rewards for human and AI agents. There are several 
limitations of existing AI, particularly for complex and adaptive decision-making 
with uncertainty, with collaborative and adversarial human and AI agents. 
Modeling multiagent collaborative and adversarial decision-making can be 
particularly complex because of its recursive nature in which other agents are part 
of the model,40 requiring dynamic and evolving estimates of decision features, 
individualized values, risk aversion, memory, and attention. These situations of 
high uncertainty, complexity, and dynamics are areas where humans excel and 
where appropriately designed interfaces for human–machine teaming can provide 
accelerated and more effective decisions. For effective teaming, the novel WMI 
should help the Warfighter to sift through complex information and help the AI to 
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discover implicit rules for decision-making. Here we provide case examples of how 
human–machine teaming can be effective. 

Complex decision-making as needed in multi-domain war-gaming is an immediate 
challenge for developing effective AI decision aids. The success of recent AIs in 
games such as go and chess are based on games with complete knowledge of the 
existing state of the world (i.e., “open” games), whereas war-gaming typically 
includes incomplete (e.g., Starcraft), uncertain, and/or deceptive information about 
the operational environment. The lack of knowledge makes it difficult for AI agents 
to calculate the risk-reward profiles of future actions due to the uncertainty in the 
state of the world, state of the different actors, and the effects of the actions taken.41 
Uncertainty also limits the ability of an AI to estimate the risk-reward profiles of 
the other actors, which are needed to calculate effective game theoretic strategies. 
It is not uncommon for AI to be overwhelmed by the breadth of possible optimal 
and near-optimal choices18 (i.e., selecting the wrong choice due to limited 
information), since humans employ heuristics to make efficient choices and 
prediction when developing strategies for effective exploration of hidden 
information.34 To assist the development of the AI’s capability for implicit 
knowledge and exploration, novel WMIs need to explain and present the decision 
landscape effectively to allow the Warfighter to quickly and naturalistically 
navigate through possible choices, while enabling the AI to opportunistically learn 
from human decision-making without imposing cognitive burden.42 

Another fundamental challenge for developing AI-enabled WMIs is how to 
effectively integrate and display information across all five domains in MDO, 
particularly space and cyber, as information across these domains has disparate 
spatiotemporal scales.43 For cyber, the scale and speed of the decision-making can 
be faster than human capabilities to process and understand, requiring human input 
to guide semi-automated decision-making and an AI that implements strategies for 
offensive and defensive deception. The WMI needs to be able to display the 
decision landscape in such a way that a small list of optimal and near-optimal 
decision strategies are explainable (e.g., via a decision tree). This should include 
estimates of the future states and risk-reward profiles of key agents under 
uncertainty16 to allow effective game theoretic decision-making to be co-developed 
and mutually understood. 

These challenges inform the possible design of effective WMIs. Namely, we need 
the capability to ingest information from disparate sources (including from other 
nations’ decision aids) and an architecture that can host the computational power 
to integrate this information, while also handling the underlying AI computations 
(both for learning and for deployment). We also need to co-develop an interface 
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and algorithm design that opportunistically harnesses the strengths and mitigates 
the limitations of human and AI agents. 

4.1.2 Computationally Informed Decision-Making 

Substantial computation power is needed to process and record all components, 
entities, and state spaces during complex decision-making in MDO war-gaming. 
Past, present, and predictive modeling from accumulated data sets of dynamic state 
spaces requires leveraging HPC resources for generating analytic insights and 
creating representations useful in complex decision-making contexts.  

One approach for implementing an HPC analytic workflow uses Persistence 
Services Framework (PSF). PSF is a recently available distributed virtualization 
solution that enables nontraditional access to high-performance computing services 
through a web-based front end, unlike traditional HPC environments where 
computational nodes are allocated to users in batch mode for a specific period of 
time. Additionally, PSF can provide distributed and continuous access to data, 
databases, containerized toolsets, and other hosted platforms.38  

In an example PSF approach, a simulation engine connects to PSF for recording all 
decisions made by both the humans and AIs. This allows analysis of the decision-
making behavior occurring during mission planning and COA development, as well 
as identification of decision-making patterns and strategies for developing 
competitive and realistic war-gaming scenarios. A battlespace visualization 
platform can be hosted on PSF and uses a messaging protocol to update all 
connected device interfaces. State information from the simulation engine can be 
used for generating graphical representations of the battlespace and the engaged 
operational units. 

Using a PSF approach and taking advantage of HPC resources allows 
implementation of AI-assistive decision-making mechanisms exploiting big data 
ingests and analytics, while being available to geographically distributed users for 
collaborative decision-making efforts. A variety of mixed reality display modalities 
connected to a PSF-hosting server can support a range of operational scenarios from 
C2 at the strategic level to more mobile tactical use at the operational edge. 

4.1.3 Realistic Representations of Decision Spaces 

Graphically representing military decision-making strategies at all levels of 
operations requires new visualization approaches that can be applied to dynamic 
environments characterized by changing rules, cognitive states, uncertainty, and 
individual biases and heuristics.17,44,45 
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The visual representation of a battlespace should be as accurate and realistic as 
technologically possible, yet remain at a cognitive level that is humanly 
understandable and interpretable.24,36,46,47 Advanced visualization approaches that 
incorporate mixed reality technologies have the potential to better represent the 
changing character of multi-domain warfare and its evolving threats and dynamic 
environments. With recent technological advancements in mixed reality 
visualization devices, lowered costs, and significantly improved reliability and 
usability of hardware, hybrid 2D and 3D visualization approaches are now possible. 

Mixed reality approaches consisting of multiple 2D monitors augmenting more 
advanced 3D visualization capabilities can provide command staff with the 
necessary insights needed to understand complex war-gaming state spaces.38 For 
example, the BVI26 platform can realistically represent geospatial terrains using a 
combination of visualization modalities. As a data server, BVI distributes terrain, 
operational, and agent behavior data to client applications supporting multiple 
visualization modalities including Head-Mounted Display devices, web-based 
interfaces, mobile Android tablet devices, and mixed reality devices (e.g., 
HoloLens 2, Oculus Quest). 

Figure 13 (top) shows a Friendly versus Hostile war-gaming scenario on BVI’s 
high-resolution terrain of the Fort Irwin National Training Center located in San 
Bernardino County, California.48 A 3D view of the battlespace can offer a more 
enriched user experience from multiple viewing perspectives than the traditional 
2D map display often used during MDMP. The 3D view in BVI’s Web Tactical 
Planner visualizes spatial information of both terrain and man-made features and 
the positions of the units depicted by MIL-STD-2525C symbols.49  

Geospatial perspectives, such as those offered by BVI, conceivably support 
decision makers’ understanding of dynamic battlespace environments. Paired with 
a navigable AI-augmented decision space (Fig. 13, bottom), the combined 
perspective can enable better understanding across visual-spatial dependencies, 
effects and causalities, estimated risks and values, uncertainty, and deception for 
complex decision-making. Combining such geospatial and decision-centric 
perspectives with AI may provide the necessary breadth to coordinate physical 
actions with actions in cyber and other nonspatial domains across multiple 
timescales, as well as the flexibility to adapt quickly to changing mission objectives 
and contexts. 
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Fig. 13 3D view of a war-game scenario in the BVI Web Tactical Planner (top) with a 
concept of an AI decision tree (bottom) 

5. Discussion 

Opportunistic learning of naturalistic human decision-making behavior by  
AI,42,50–52 and the appropriate structuring and sequencing of the learning 
environment so that the AI is judiciously shaped by the training curriculum,53 are 
already established frameworks for improving the ability of AI to quickly learn 
difficult challenges. Further advancing the AI’s capability for complex decision-
making for war-gaming requires improving the ability of AI to tackle decisions 
under MDO contexts with high uncertainty, deception, and game theory, which are 
all challenges for reward assignment during AI development. Overcoming these 
challenges requires leveraging multidisciplinary advances ranging from 
neurobiological advances in understanding the brain’s decision and reward 
circuitry and computations to the psychology of how expertise, tacit knowledge, 
theory of mind, game theory, and metareasoning are applied during complex 
decision-making. 

How AIs can best learn from human complex decision-making remains an open 
question. Although the exact mechanisms for reward shaping for complex decision-
making are yet to be discovered, this project has produced a vision of how to 
discover such mechanisms via a novel AI test-bed and WMIs. The ARL Battlespace 
AI test-bed and scenarios place the human and AI in the context of MDO-relevant 
decision-making, enabling the AI to learn how different decisions and factors 
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interact and how humans navigate through such complex decision trees 
collaboratively and adversarially. A key advance is that the test-bed and scenarios 
provide a rich environment for efficiently developing AI Theory of Mind and 
MDO-relevant metareasoning for complex decision-making by abstracting away 
factors that would sparsify and impede learning of decision-making essentials. 

Another advance is the development of high-performance computing frameworks 
to enable AI decision support for continuous distributed training. This will enable 
the hosting of the AI decision aids on ARL’s Persistent Services Framework, so 
that in the future, Soldiers can train individually or collaboratively, in mixed human 
and AI teams, against an AI war-gaming agent anytime, anywhere.  

A third advance of this project is the development of an approach for visualizing 
the AI’s decision process to enable AI transparency and trust as well as 
collaborative human–AI team decision-making. The AI’s reasoning must be both 
abstracted and relatable to the war-gaming environment, so that the human can 
understand the AI’s valuation of different decision outcomes and efficiently 
navigate through the AI’s decision tree without imposing undue cognitive burden. 
We have taken the first steps toward an AI-augmented WMI that is based on 3D 
mixed reality to harness and augment inherent human capacities for 3D cognition 
and prediction.54–58 With further design, we envision that its interface will feel 
naturalistic while expanding the capability to display information from across 
multiple domains and enabling the AI to opportunistically learn from the user’s 
decision-making. Such a naturalistic, intuitive AI-enabled decision aid, developed 
to support MDO C2 decision-making including deliberative and tacit reasoning, as 
well as collaborative and adversarial reasoning, is essential for humans to trust the 
AI estimations of COA outcomes in complex decision-making. 

5.1 Potential for Further Development of the AI Test-Bed and AI 
Agents 

While the exploitation of deep reinforcement learning algorithms in gaming has 
shown significant promise recently, a prerequisite of that success is working with a 
relatively simple, well-structured game. The real challenge arises as the 
environment increasingly relies on sparse observational data, complex and dynamic 
agent strategies, and sparse observational data. There are several tradeoffs to 
developing the platform entirely in house versus building on an existing open 
source library—primarily the minimization of constraints and sheer workload of 
environment development. Creating an entirely new custom platform allows for 
complete customization of game-related intricacies, albeit becoming very time 
consuming. Conversely, various impenetrable constraints emerge when using an 
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existing library such as the StarCraft2LearningEnvironment (SC2LE),59 but the 
work put into the game development decreases tenfold. Our ongoing second-
generation development of the ARL Battlespace AI test-bed, named Simple Yeho 
(Fig. 14), is built upon a happy balance between both ends of the scale, OpenAI 
Gym,60 a toolkit for developing reinforcement learning algorithms that makes no 
assumptions about the input agent and environment structure. A basic framework 
must be followed obviously, but OpenAI Gym provides the client complete design 
freedom in addition to a plethora of documentation and examples to follow. There 
are no immediate issues that need to be addressed from a game development point 
of view, but it does need to be a higher priority moving forward.  

 

Fig. 14 Simple Yeho AI test-bed 

Future issues are not limited to the game environment, as they will inevitably 
extend into theoretical reinforcement learning challenges such as seamless 
multiagent communication, task coordination, and stationary policies. More 
practical problems to focus on include algorithmic efficiency (limiting 
computationally intensive tasks as well as memory allocation mindfulness), a novel 
decentralized reinforcement learning algorithm, and data generalization across 
multiple domains. Overtaxing hardware resources is a common bottleneck in all 
branches of AI. From a software standpoint, the ARL Battlespace AI test-bed is 
quite frugal with its resources, and the environment remains focused on research 
questions for AI development rather than full MDO implementation, which is why 
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computational efficiency is not yet a pressing issue. Potential solutions to 
generalizing game state information, particularly in a dynamic environment, 
include the temporal difference variational autoencoder61 and distributional 
temporal difference reinforcement learning,62 as they allow for explicit beliefs 
about several states in the future (which plays into the metareasoning aspect) in 
addition to providing a smooth latent space in between data points. Additional 
major problems our novel reinforcement learning algorithm should address are 
security/authentication, agent decision-making transparency, and real-time inter-
agent communication. Integrating blockchain into the DEVCOM ARL framework 
would ensure secure lines of communication between nodes, provide an immutable 
and decentralized ledger to shed light on the agent's low-level decision making, and 
introduce a democratic voting system to the agents to promote group cooperation 
while still maintaining individual selfishness.  

5.2 Potential for Further Development of the Human–AI 
Collaborative Interface 

Limitations in the current military decision-making process defined a 
multidisciplinary research approach for development of a human and AI WMI for 
complex decision-making. A realistic representation of the decision space as a 
foundational layer consists of the battlespace terrain with geospatially accurate 
natural and man-made artifacts. An advanced yet intuitive user interface allowing 
mixed reality perspectives of the battlespace enables decision-maker exploration of 
COA alternatives based on operational factors. Both these requirements guided 
selection of an Army and commercially developed battlespace interaction system, 
BVI, as a potential transition medium for the AI and human-AI teaming 
development achieved in the ARL Battlespace AI test-bed. 

An initial step toward transition involved overlaying the grid-like environment of 
ARL Battlespace on a BVI real-world operational terrain and adapting the existing 
BVI multimodal user interface for war-gaming. Figure 15 shows a section of an 
expanded grid overlayed on Fort Irwin terrain using BVI’s Web Tactical Planner 
3D viewer perspective with friendly and hostile units situated at the start of a war-
gaming session. Units can be placed and manipulated using a tactical planning 
toolbar with mouse, trackpad, or touchscreen interaction within a browser window. 
BVI provides the capabilities to add units; route points, tactical symbols, and 
graphics; and draw features such as lines, polygons, and text boxes.  
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Fig. 15 3D view of a war-game scenario in the BVI Web Tactical Planner with grid overlay 

An unresolved question is how best to harness BVI’s mixed reality (XR) 
visualization capabilities for collaborative decision-making (e.g., by sharpening 
decision-makers’ understanding of the terrain’s geospatial factors during war-
gaming). The ability to load different terrains and create customized training 
scenarios potentially derived from multidimensional data and viewed in a variety 
of immersive formats exceeds visualization capabilities of other Army systems. 
Depending on the expanse and detail of these 3D terrains, how the interface 
displays this information could cause substantial information overload or confusion 
as the decision-maker maneuvers throughout large areas of terrain using a robust 
array of interaction modalities. An effective interface would need to be designed to 
select not only what environmental and decision space information to 
communicate, but also how to present that information from the user’s vantage 
point. 

If development time and effort are not possible, BVI’s API offers opportunities to 
embed visual aids in the form of markings, labels, and scenario-adaptive grids 
positioned on top of the terrain as spatial management interventions for decision-
makers. For example, the rows and columns of the grid depicted in Fig. 15 could 
be labeled or coded for quickly locating real-time events and AI-generated 
activities. Multidimensional gridded structures and coding schemes could elevate 
war-gaming to a level of complexity characterized by MDO while mitigating some 
of the terrain-based spatial management concerns. 

Coordinating multiple views of the battlespace with data anlysis in both spatial and 
temporal domains, visualizations provide for additional approaches that facilitate 
complex decision-making during war-gaming. When a shared MDO battlespace 
representation is required, a collaborative strategic planning mode can be achieved 
with multiple coordinated views implemented on different visualization modalities 
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to update interactively based on distributed command staff inputs. Command staff 
inputs can also guide the application of visual filters to the coordinated views, 
resulting in a reduction of unnecessary complexity and an accentuation of scenario 
or mission-critical battlespace information. 

Figure 16 shows the SyncVis63 visual analytics system designed to display multiple 
coordinated views of data analysis supporting data exploration and understanding. 
SyncVis generates multiple data representations by linking the information shown 
in each view to the others via user interactions. This example shows SyncVis’s 2D 
interface for a COVID categorical population data analysis in four coordinated 
views: Variable Selector (six attributes selected), Map/Terrain, Mutual Information 
Diagram, and Stacked Area Chart for each selected variable. 

 

Fig. 16 SyncVis 2D interface showing multiple coordinated visualizations of COVID data 
analyses 

The SyncVis visualization capabilities can be integrated with an HPC analytic 
workflow back end using PSF. The PSF server can stream operational and agent 
behavior data to both BVI and SyncVis, creating a unified battlespace exploration 
experience.64 The benefits of coordinating battlespace views based on user on-
demand input and filtering are open for investigation. 

A flexible war-gaming environment appears to be key as each training scenario, 
COA, and mission plan is developed within the constraints of the MDMP and 
associated military doctrine but is uniquely different and dependent on the 
battlespace and its operational variables. An HPC PSF data analysis processing 
pipeline powering a WMI with Soldier or commander on-demand coordinated BVI 
and SyncVis visualizations of the battlespace would revolutionize the existing war-
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gaming paradigm and touch the level of complexity inherent in MDO and the level 
of human and AI-directed decision guidance required to win.  

6. Conclusion 

We have highlighted three key areas for development: the AI-directed decision 
guidance,24,29,36,65 the computational infrastructure to support this guidance, and the 
development of mixed reality representations for decision transparency.22,46 
Advances in these areas require expertise across many different disciplines. Novel 
AI development requires the fusion of ideas from neuroscience, psychology, and 
mathematics to overcome bottlenecks to long-standing problems in complex 
decision-making. This includes learning across long time scales and catastrophic 
forgetting under changing contexts, as well as problems more specific to war-
gaming, such as multiagent decision-making with uncertainty, deception, and game 
theory. The computational infrastructure also needs development, as computing 
power and data frameworks are both essential for producing common operating 
pictures for human–AI teaming at the tactical edge. For efficient development, 
proprietary restrictions and software dependencies should be abstracted away via a 
common framework, with clear documentation for usage and troubleshooting to 
allow academia, government, and industry to better focus on tackling the human–
AI teaming problem. This common framework should include efficient passing of 
information while providing flexibility and adaptability to the needs of both the AI 
development and the human user across both training and live-use environments. 
Finally, the development of the interface itself needs concerted expertise across 
multiple disciplines. A foundational problem is how to compact information to be 
efficiently understood by the user, and how to best harness user interactions for 
opportunistic learning. The human mind does not process all sensory information, 
but instead makes predictions and assumptions about the world to economize its 
computations under an environment with incomplete information. An effective 
WMI should anticipate both potential decision outcomes as well as individual user 
expectations and assumptions, and it should provide alerting and suggest 
counterstrategies for possible friendly and hostile COAs and deception. 
Additionally, the AI decision aid must estimate what is the user’s tacit 
understanding, allowing it to present the most relevant information and the most 
promising choices pulled from across the Warfighting domains. 
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Appendix. Learning from Historical Data
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Let the set of actions of a unit i be defined as  𝐴𝐴𝑖𝑖 = �𝑎𝑎1𝑖𝑖 , … ,𝑎𝑎𝐾𝐾𝑖𝑖
𝑖𝑖 � and the set of 

possible states of the unit be defined as 𝑆𝑆𝑖𝑖 = �𝑠𝑠1𝑖𝑖 , … , 𝑠𝑠𝑀𝑀𝑖𝑖 �, where M is the total 
number of states of all of the units. Following from the previous section, the 
probability of an action is modeled as a categorical distribution 

𝑃𝑃�𝑎𝑎𝑘𝑘𝑖𝑖 �𝑠𝑠𝑚𝑚𝑖𝑖 � = �𝜋𝜋𝑖𝑖�𝑥𝑥�𝑠𝑠𝑚𝑚𝑖𝑖 �
[𝑥𝑥=𝑘𝑘]

𝐾𝐾𝑖𝑖

𝑥𝑥=1

 

where  𝜋𝜋𝑖𝑖�𝑥𝑥�𝑠𝑠𝑚𝑚𝑖𝑖 � is the probability of taking an action x given that the unit i is in 
state 𝑠𝑠𝑚𝑚𝑖𝑖 . One approach to modeling these probabilities is to use the frequentist 
approach as taken in the previous section. However, due to limited data, the 
epistemic uncertainty in the probabilities 𝜋𝜋𝑖𝑖�𝑥𝑥�𝑠𝑠𝑚𝑚𝑖𝑖 � must be incorporated, as some 
of the action state pairs may not be realized in the overall set of game data.  

Following a Bayesian approach, we can account for the epistemic uncertainty in the 
probabilities by utilizing a prior on the distribution of 𝜋𝜋𝑖𝑖. To identify the prior, we 
first analyze the game data D and compute the frequency of times a unit has taken 
an action while in a particular state, i.e., identify the set 𝑁𝑁𝑖𝑖 =
�𝑁𝑁�𝑎𝑎1𝑖𝑖 �𝑠𝑠1𝑖𝑖�, … ,𝑁𝑁�𝑎𝑎1𝑖𝑖 �𝑠𝑠𝑀𝑀𝑖𝑖 �, … ,𝑁𝑁�𝑎𝑎𝐾𝐾𝑖𝑖

𝑖𝑖 �𝑠𝑠𝑀𝑀𝑖𝑖 �� , which is a set of counts that represent 
the number of times an action was taken while the unit was in a particular state. 
Then, the distribution of the probabilities 𝜋𝜋𝑖𝑖 are modeled according to a Dirichlet 
distribution 

𝑓𝑓�𝜋𝜋𝑖𝑖�𝑠𝑠𝑚𝑚𝑖𝑖 ,𝐷𝐷,𝛼𝛼� =
1

𝐵𝐵(𝛼𝛼)�𝜋𝜋𝑖𝑖�𝑥𝑥�𝑠𝑠𝑚𝑚𝑖𝑖 �
𝛼𝛼𝑥𝑥−1+𝑁𝑁(𝑎𝑎𝑥𝑥𝑖𝑖 |𝑠𝑠𝑚𝑚𝑖𝑖 )

𝐾𝐾𝑖𝑖

𝑥𝑥=1

, 

where 𝛼𝛼 = {𝛼𝛼1, … ,𝛼𝛼𝐾𝐾𝑖𝑖} are the set of hyperparameters s.t. 𝛼𝛼𝑥𝑥 > 0 and 𝐵𝐵(𝛼𝛼) =
(∏ Γ(𝛼𝛼𝑥𝑥)𝐾𝐾𝑖𝑖

𝑥𝑥=1 )/Γ(∑ 𝛼𝛼𝑥𝑥𝐾𝐾𝑖𝑖
𝑥𝑥=1 ) is the multivariate beta function. We model the 

distribution of probabilities as a Dirichlet distribution since it is the conjugate prior 
of a categorical distribution. Following the Bayesian bootstrap1 and imprecise 
Dirichlet models,2 the hyperparameters were chosen to be sufficiently close to 0 to 
allow the human data to dictate the actions taken by the random agent. Future work 
will analyze the optimal choice of the hyperparameters given the defined model.  

Now, since the underlying probabilities of each action conditioned on the state are 
unknown, we compute the probability of an action as the posterior predictive 
distribution: 

 
1 Rubin DB. The Bayesian bootstrap. The Annals of Statistics. 1981;130–134. 
2 Bernard J-M. An introduction to the imprecise Dirichlet model for multinomial data. International 
Journal of Approximate Reasoning. 2005;39(2–3):123–150. 
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𝑃𝑃�𝑎𝑎𝑘𝑘𝑖𝑖 �𝑠𝑠𝑚𝑚𝑖𝑖 ,𝐷𝐷� = � 𝑃𝑃�𝑎𝑎𝑘𝑘𝑖𝑖 �𝑠𝑠𝑚𝑚𝑖𝑖 ,𝜋𝜋𝑖𝑖�𝑓𝑓�𝜋𝜋𝑖𝑖�𝑠𝑠𝑚𝑚𝑖𝑖 ,𝐷𝐷,𝛼𝛼�𝐷𝐷𝜋𝜋𝑖𝑖
𝜋𝜋𝑖𝑖

=
𝑁𝑁�𝑎𝑎𝑘𝑘𝑖𝑖 �𝑠𝑠𝑚𝑚𝑖𝑖 � + 𝛼𝛼𝑘𝑘 + 1

∑ �𝛼𝛼𝑥𝑥 + 𝑁𝑁�𝑎𝑎𝑥𝑥𝑖𝑖 �𝑠𝑠𝑚𝑚𝑖𝑖 ��𝐾𝐾𝑖𝑖
𝑥𝑥=1 + 𝐾𝐾𝑖𝑖

  

 (A-1) 

This distribution is the expected value of the action probabilities conditioned on the 
posterior Dirichlet distribution conditioned on the game data. A key property that 
comes from using the posterior predictive distribution instead of the frequency 
distribution is that the probability of an action state pair is always greater than 0, 
even if the action state pair was not realized in the game data.  

In general, we can also compute the probabilities of joint actions and states 
following the same approach as 

𝑃𝑃�𝑎𝑎𝑘𝑘𝑖𝑖 ,𝑎𝑎𝑘𝑘′
𝑗𝑗 �𝑠𝑠𝑚𝑚𝑖𝑖 , 𝑠𝑠𝑚𝑚′

𝑖𝑖 ,𝐷𝐷� =
𝑁𝑁�𝑎𝑎𝑘𝑘𝑖𝑖 ,𝑎𝑎𝑘𝑘′

𝑗𝑗 �𝑠𝑠𝑚𝑚𝑖𝑖 , 𝑠𝑠𝑚𝑚′
𝑖𝑖 � + 𝛼𝛼𝑘𝑘𝑘𝑘′ + 1

∑ �𝛼𝛼𝑥𝑥 + 𝑁𝑁�𝑎𝑎𝑥𝑥𝑖𝑖 ,𝑎𝑎𝑥𝑥′
𝑗𝑗 �𝑠𝑠𝑚𝑚𝑖𝑖 , 𝑠𝑠𝑚𝑚′

𝑖𝑖 ��𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗
𝑥𝑥=1 + 𝐾𝐾𝑖𝑖𝐾𝐾𝑗𝑗

 

where 𝑁𝑁�𝑎𝑎𝑘𝑘𝑖𝑖 , 𝑎𝑎𝑘𝑘′
𝑗𝑗 �𝑠𝑠𝑚𝑚𝑖𝑖 , 𝑠𝑠𝑚𝑚′

𝑖𝑖 � are the number of times the joint actions and states were 
taken and 𝛼𝛼𝑘𝑘𝑘𝑘′ is the hyperparameter for the joint actions and states pair. 
Implementing the joint actions into the overall framework will be studied as future 
work.  
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List of Symbols, Abbreviations, and Acronyms 

2D two-dimensional 

3D three-dimensional 

AI Artificial Intelligence 

AFSIM Advanced Framework for Simulation, Integration and Modeling 

APF Automated Planning Framework 

API application programming interface 

ARES Augmented REality Sandtable 

ARL Army Research Laboratory 

BVI Battlespace Visualization and Interface (formerly ARES) 

C2 command and control 

COA course of action 

DEVCOM US Army Combat Capabilities Development Command 

DFV Director’s Future Ventures 

DOD  Department of Defense 

DOTMLPF doctrine, organization, training, materiel, leadership and 
education, personnel, facilities 

HPC high-performance computing 

MDMP military decision-making process 

MDO Multi-Domain Operations 

METT-TC mission, enemy, terrain & weather, troops, time available, and 
civil considerations 

MITM man-in-the-middle 

OneSAF One Semi-Automated Forces 

OpSim Operationally focused simulation tool 

PSF Persistent Services Framework 

S&T science and technology 
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SC2LE StarCraft 2 Learning Environment 

Simple Yeho “Simple Yehorivka” AI test-bed 

WMI Warfighter machine interface 
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 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 1 DEVCOM ARL  
 (PDF) FCDD RLH B 
  T DAVIS 
  BLDG 5400 RM C242 
  REDSTONE ARSENAL AL  
  35898-7290 
 
 1 DEVCOM ARL 
 (PDF) FCDD HSI 
  J THOMAS 
  6662 GUNNER CIRCLE 
  ABERDEEN PROVING  
  GROUND MD 
  21005-5201 
 
 1 USN ONR 
 (PDF) ONR CODE 341    J TANGNEY 
  875 N RANDOLPH STREET 
  BLDG 87   

ARLINGTON VA  22203-1986 
 
 1 USA NSRDEC 
 (PDF) RDNS D    D TAMILIO 
  10 GENERAL GREENE AVE   

NATICK MA  01760-2642 
 

 1 OSD OUSD ATL 
 (PDF) HPT&B    B PETRO 
  4800 MARK CENTER DRIVE 
  SUITE 17E08 
  ALEXANDRIA VA 22350 
 
 1 DA HQ 
 (PDF) DASA(R&T) 
 
 9 USARMY AFC 
 (PDF) L BROUSSEAU 
  J REGO 
  A LINZ 
  K WADE 
  S BRADY 
  J REGO 
  T KELLY 
  E JOSEPH 
  B SESSLER 
 

 2 DEVCOM HQ 
 (PDF) FCDD ST 
   C SAMMS 
   M HUBBARD 
 
 2 OAK RIDGE ASSOCIATED  
 (PDF) UNIVERSITIES 
  W PEREGRIM 
  T KRAYZMAN  
 
 1 NIST 
 (PDF) S SU 

 
ABERDEEN PROVING GROUND 

 
 89 DEVCOM ARL 
 (PDF)  FCDD RLC 
   C BEDELL  
   B SADLER 
   B PIEKARSKI 
   H EVERITT 
  FCDD RLC CA 
   J HARE 
   L KAPLAN 
  FCDD RLC ES 
   G VIDEEN 
   S HILL 
   Y PAN 
  FCDD RLC I 
    B MACCALL 
  FCDD RLC N 
   BM RIVERA 
   A SWAMI 
  FCDD RLC IT 
   A RAGLIN 
   J RICHARDSON 
  FCDD RLC NC 
   S KASE 
  FCDD RLC S 
   O TKACHENKO 
  FCDD RLD 
   P BAKER 
   A KOTT 
    S SILTON 
  FCDD RLD D 
   T ROSENBERGER 
  FCDD RLD E 
   KS FOSTER 
  FCDD RLD F 
   K KAPPRA 
  FCDD RLD FR 
   M TSCHOPP 
  FCDD RLD SM 
   L BLUM 
  FCDD RLH 
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   J LANE 
   Y-S CHEN 
   P FRANASZCZUK 
   K MCDOWELL 
  FCDD RLH B 
   JJ SUMNER 
  FCDD RLH F 
   J GASTON 
   K OIE 
  FCDD RLH FA 
   AW EVANS 
   G BOYKIN 
  FCDD RLH FB 
   J GARCIA (A) 
   H ROY 
  FCDD RLH FC 
   J TOURYAN (A) 
   T ROHALY 
   C HUNG 
   W PEREGRIM 
   T KRAYZMAN 
  FCDD RLH FD 
   A MARATHE 
  FCDD RLH T 
   D STRATIS-CULLUM 
  FCDD RLL 
   T KINES 
  FCDD RLL D  
   J S ADAMS 
  FCDD RLL DP 
   J MCCLURE 
  FCDD RLR 
   B HALPERN 
   S LEE 
   D STEPP 
  FCDD RLR E 
   RA MANTZ 
   C VARANASI 
  FCDD RLR EL 
   JX QIU 
   MD ULRICH 
  FCDD RLR EN 
   RA ANTHENIEN JR 
  FCDD RLR IC 
   MA FIELDS 
   SP IYER 
  FCDD RLR IM 
   JD MYERS 
  FCDD RLR IN 
   XN WANG 
  FCDD RLR  
   P REYNOLDS 
  FCDD RLR P 
   LL TROYER 
  FCDD RLR PC 
   D POREE 

  FCDD RLR PL 
   MK STRAND 
  FCDD RLS 
   J ALEXANDER 
   M GOVONI 
   M WRABACK 
  FCDD RLS C 
   M REED 
  FCDD RLS CC 
   S BEDAIR 
  FCDD RLS CE 
   TR JOW 
   K XU 
  FCDD RLS E 
   RD DELROSARIO 
  FCDD RLS ED 
   K JONES 
  FCDD RLS EA 
   A ZAGHLOUL 
  FCDD RLS S 
   WL BENARD 
  FCDD RLS SO 
   W ZHOU 
  FCDD RLW 
   S KARNA 
   JF NEWILL 
   AM RAWLETT 
   SE SCHOENFELD 
   J ZABINSKI 
  FCDD RLW B 
   R BECKER 
  FCDD RLW M 
   ES CHIN 
  FCDD RLW S 
   V CHAMPAGNE 
   AL WEST 
  FCDD RLW T 
   RZ FRANCART 
  FCDD RLW TC 
   JD CLAYTON 
  FCDD RLW W 
   TV SHEPPARD 
  FCDD RLW WA 
   B RICE 
   R PESCE-RODRIGUEZ 
  FCDD RLW M 
   A HALL 
  FCDD RLW MC 
   B RINDERSPACHER 
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